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Abstract

Cubic, single-crystal, transparent Gd3Ga5O12 has a density of 7.10 g/cm3, a

Hugoniot elastic limit (HEL) of 30 GPa, and undergoes a continuous phase transition

from 65 GPa to a quasi-incompressible (QI) phase at 120 GPa.  Only diamond has a

larger HEL.  The QI phase of Gd3Ga5O12 is more incompressible than diamond from 170

to 260 GPa.  Electrical conductivity measurements indicate the QI phase has a bandgap

of 3.1 eV.  Gd3Ga5O12 can be used to obtain substantially higher pressures and lower

temperatures in metallic fluid hydrogen than was achieved previously by shock

reverberation between Al2O3 disks.
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Dynamic compression achieves pressures, densities, and temperatures that enable

investigation of ultracondensed matter at conditions yet to be achieved by any other

technique.  The prototypical example is observation of minimum metallic conductivity

(MMC) of dense fluid hydrogen at 140 GPa, nine-fold compression of liquid density, and

~3000 K [1-3].  The high pressure and density and relatively low temperature are

achieved by multiple-shock compression [2].  Temperature T is relatively low in the

sense that T/TF~0.01, where TF is the Fermi temperature.  The time scale of compression

is sufficiently long to achieve thermal equilibrium and sufficiently short so the process is

adiabatic. Similar results are obtained for oxygen [4] and nitrogen [5].  Fluid Cs and Rb

undergo the same transition at 2000 K near their liquid-vapor critical points [6].  All five

elemental fluids have essentially the same value of MMC and the density dependences of

their semiconductivities scale with the quantum-mechanical charge-density distributions

of the respective atoms [5].   Liquid H2 is one of the most compressible of all materials.

In this paper, we report that the dielectric crystal Gd3Ga5O12 (GGG) transitions to

a virtually incompressible phase at 120 GPa shock pressure.  Prior to this investigation,

single-crystal diamond and Al2O3 (sapphire) were the least compressible dielectric

crystals known at high shock pressures. Diamond has a very low shock compressibility,

remains elastic up to a shock stress of 70 GPa [7], and retains its diamond structure to

more than 600 GPa [8,9].  Sapphire is elastic up to ~20 GPa and has phase transitions at

high shock pressures but the accompanying changes in compressibility are relatively

small [10-12].  Gd3Ga5O12 is more incompressible than sapphire at virtually all shock

pressures and is more incompressible than diamond above 170 GPa shock pressure.

Below 120 GPa, shock heating of GGG is sufficiently small that its shock-compression
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curve is essentially coincident with its 300-K isotherm, measured previously up to 84

GPa in a diamond-anvil cell (DAC) [13].  GGG will enable substantially higher pressures

(~300 GPa) and lower temperatures (~1500 K) to be achieved in fluid metallic hydrogen

than was achieved previously with shock reverberation between sapphire disks [2] and

GGG has implications for a new class of oxides at high pressures.

This quest was determined by the hydrodynamics of shock propagation.  In a

single-shock, incompressibility is related to shock impedance Z= 0us=P/up, where 0 is

initial mass density, us is shock velocity, P is pressure, and up is particle (mass) velocity

behind the shock front.  The locus of states achieved by a series of single-shock

compressions is called the Hugoniot curve.  Shock impedance is related to

incompressibility  defined as =(dP/d )H, where  = / 0  and the derivative is along the

Hugoniot.  The Hugoniot equations yield (dP/d )H=( 0us
2/  2)[(1+x)/(1-x)], where

x=(up/us)(dus/dup).  Large incompressibility  means 0us=Z is large.

Shock compression causes temperature to increase.  For a highly incompressible

material shock temperatures and thermal pressures are relatively small, which means the

Hugoniot and 300-K isotherm are nearly coincident, such as for diamond [9].  However,

shock heating might have an appreciable effect on compressibility and phase transitions.

Oxides, such as polycrystalline RuO2 up to 40 GPa at 300 K [14], undergo phase

transitions at high static pressures and those phases might have high shock velocities.

For these reasons we have investigated the cubic garnet Gd3Ga5O12 with a density

twice that of diamond.  Average densities were 7.099 ± 0.006 g/cm3, as measured by the

Archimedean method.  Specimens were single-crystal, transparent, cylindrical disks with

a diameter of 13 or 18 mm and a thickness of about 2.4 mm obtained from Princeton
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Scientific Corp.  Most specimens were oriented with their circular surfaces parallel to

(111); a few had these surfaces parallel to (100).  We measured equation-of-state data,

dynamic strength, phase-transition pressures and electrical conductivities of GGG single-

shocked in the range 30 to 260 GPa.  Ultrasonic velocities were measured with the pulse-

echo method.  The tensor of elastic-constants was determined by measuring longitudinal

sound velocity cL along <111>, transverse velocity cT along <100> and <111>, and using

the relation for elastic constants of a cubic crystal.  Values of cL along <100> and <111>

were 6.557 and 6.433 km/s, respectively.  Bulk and transverse sound velocities, cB and cT,

were 5.107 and 3.458 km/s, about half those of diamond.  Sound velocities were

measured to within 0.1%.

Shock-wave profiles were measured with impactors accelerated up to 2, 4, and 6

km/s at Kumamoto University [15], Tohoku University [16], and the National Institute

for Materials Science in Tsukuba [17], respectively, using the inclined-mirror technique.

A streak camera record was published previously [18]. The 300-K isotherm was reduced

from the Hugoniot using thermal corrections calculated with the Debye model and the

Mie-Grüneisen equation of state [19].  Electrical conductivities [20] and shock-wave

profiles with a VISAR were measured at Lawrence Livermore National Laboratory.

Measured us-up data are plotted in Fig. 1.  An unusually large increase in the slope

of us is apparent at up=2.32 km/s, indicative of a phase transition.  These data were

transformed to shock pressure P and density  with the Rankine-Hugoniot equations and

plotted in Fig. 2.  GGG is elastic up to a stress HEL, where HEL is the Hugoniot elastic

limit [21], which depends weakly on orientation and impactor velocity uI.  Along <111>,

HEL=33 and 31 GPa at up=0.66 and 0.62 km/s, respectively.  Along <100>, HEL=29 GPa
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at up=0.57 in two cases.  The large HEL of GGG (30 GPa) is about twice that of other

materials except diamond (70 GPa) and is caused by its large initial mass density and the

rigid covalent bonding of Gd and Ga with oxygen atoms.  For comparison, values of the

HEL of single-crystal Al2O3 are 15-21 GPa [10,22], 25 GPa for <110> single-crystal

cubic ZrO2 doped with Y2O3
 [19], 14-17 GPa for polycrystalline Si3N4

 [23,24], 17 GPa for

polycrystalline B4C
 [25,26], and 16-19 GPa for polycrystalline SiC [27].

The two-wave shock structure of GGG indicates an elastic and plastic wave in the

garnet structure up to the onset of a phase transition (PT) at up=1.35 km/s, 65 GPa, a

calculated temperature of 680 K, and a calculated thermal pressure of 1.5 GPa.  Because

of the small thermal pressure, PT is probably the onset of the amorphous phase observed

in a DAC at 74 GPa.  Under shock compression with shear stress, lattice defects, and

temperature (680 K), it is reasonable to expect that the onset of this transition would

occur at a shock pressure of 65 GPa, less than the 74 GPa observed in the DAC data.

A small third wave was observed with the inclined mirror in the intermediate (IM)

phase between PT and the onset of the high-pressure (HP) phase at up=2.32 km/s and 120

GPa.  The IM phase has strength and probably transforms continuously from the initial

cubic structure at PT to the HP phase at 120 GPa that extends up to more than 260 GPa.

The IM phase is probably the amorphous phase observed in a DAC [13], though its

structure is yet to be determined.  Since the static 300-K isotherm does not indicate a

volume change at the onset of amorphization, any change in us at PT is expected to be

small, as observed.  VISAR data indicate the HEL and PT at particle velocities in good

agreement with those measured with the inclined mirror.  However, the third wave could

not be observed with the VISAR because fringes were lost in the IM phase.  Our
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diagnostic method is insensitive to strength in the HP phase.  The us-up fits along <111>

are us=6.433+0.98uP for 0<uP<0.67 km/s, us=-2.07+12.6 up-4.47 up
2 for 0.67<up<1.35

km/s, us=5.13+0.66up for 1.35<up<2.32 km/s, and us= 1.79+2.10up for 2.32<up<3.70

km/s.

 The measured 300-K isotherm is plotted as P versus   [13] in Fig. 2.  Those data

show that GGG retains its low-pressure (LP) garnet phase up to 74 GPa.  Diffraction lines

then broaden to 84 GPa; this line broadening was interpreted as amorphization.  Under

static compression GGG remains transparent and electrically insulating to 90 GPa.

Broadening of photoluminescence lines of GGG near 90 GPa was attributed to a change

in site symmetry.  Some silicates under static compression at 300 K become amorphous

at pressures in which a continuous transition to a higher-pressure crystalline phase

occurs.  The DAC data suggest such a continuous transition begins at 74 GPa at 300 K.

Figure 2 shows that thermal pressure increases substantially in the HP phase, which

is nearly incompressible. Thus, slope S of the HP phase is enhanced by shock

temperatures and the associated increase in thermal pressures.  At 250 GPa (dP/d )H is

2.4 and 0.89 TPa for GGG and diamond, respectively.  In Fig. 3, P is plotted versus up for

several dielectric crystals up to ~300 GPa.  Above 170 GPa, GGG has the highest shock

impedance Z= 0us=P/up and is less compressible than all of them, including diamond.

Electrical conductivities  in Fig. 2 increase six orders of magnitude between 120

and 260 GPa shock pressure, which correlates well with completion of the transformation

from the IM to the HP phase observed on the Hugoniot at 120 GPa.  The calculated

temperatures T of the HP phase increase from 1500 to 6500 K at pressures from 120 to

250 GPa.  Our measured conductivities fit = 0exp(-Eg/2kBT), where kB is Boltzmann’s
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constant, 0=105 (ohm-cm)-1, and Eg=3.1±0.1 eV at 11.2 ± 0.4  g/cm3.  The facts that

0=90 (ohm-cm)-1 for fluid semiconducting hydrogen [2] and that the Hugoniot of

graphite is less compressible than diamond and is probably in the fluid state above ~200

GPa [9] suggest the HP phase of GGG is a fluid.  On the other hand, a band gap of 3.1 eV

is intermediate between that of crystalline SiC (2.2-2.9 eV) and diamond (5.5 eV), which

suggests the HP phase might be an ordered solid.

Calculated 300-K isotherms of the LP and HP phases were obtained by correcting

the Hugoniot for thermal pressure using the Debye and the Grüneisen models and fitting

the Birch-Murnaghan (B-M) equation to the results in the LP and HP regimes.  The

density of the HP phase at P=0 and 300 K derived from the fit is 9.32 ± 0.65 g/cm3, a

30% increase over initial density of 7.10 g/cm3.  The bulk modulus K0 of GGG derived

from this fit is K0=440 6 GPa (K0’=4.8± 0.3), comparable to that of diamond.

Oxides with garnet structures are predicted to transform at high static pressures to

a higher-coordination perovskite structure or to decompose (e.g., 2Gd3Ga5O12_3Gd2O3

+5Ga2O3)
 [28].  The large volume collapse (~30%) is reasonable for a garnet to

perovskite transition in GGG.  However, because of the relatively short duration of shock

experiments, the HP phase might have high local coordination typical of a dense

perovskite phase and relatively little long-range order because of the ~100 ns duration of

the experiment.  Since X-ray diffraction data are not available at high shock pressures,

the structures of neither the HP nor the IM phase are yet known.

Collapse to a quasi-incompressible HP phase has not been observed in other

oxides but might occur at sufficiently high pressures.  The linear slope S of us(up) in the

IM phase of GGG is S=0.66.  Combining the Hugoniot equation V=V0 (1-(up/us))) and the
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common relation us=C+Sup, in the limit C<<Sup limiting compression ( / 0)L is simply

related to the slope S: ( / 0)L=S/(S-1)<0, which suggests that a phase transition must

occur at sufficiently high pressure to a phase with a positive limiting compression.

Limiting compression of the HP phase (S=2.1) is 1.9. Since slope S of Al2O3 at highest

pressures is 0.96, Al2O3 might also collapse to a substantially more incompressible phase

above 340 GPa, the current maximum pressure of its Hugoniot measurements [12].

In summary: (i) GGG collapses to a quasi-incompressible phase at 120 GPa that is

less compressible than diamond above 170 GPa shock pressure.  This HP phase is a

semiconductor with a bandgap of 3.1 eV. (ii) The electrical conductivity of GGG remains

less than ~100 (ohm-cm)-1 up to ~300 GPa.  As a result, metal electrodes could be

inserted through GGG disks to measure electrical conductivities of metallic fluid

hydrogen (~2000 (ohm-cm)-1) up to ~300 GPa using a reverberating shock wave.  Thus,

Gd3Ga5O12 will enable achieving pressures and temperatures about 50% higher and lower,

respectively, than was achieved previously in metallic fluid hydrogen by shock

reverberation between Al2O3 disks [1-3].  (iii) It is possible that other oxides, such as

Al2O3, undergo complete collapse to a quasi-incompressible phase at higher pressures

than achieved thus far.  (iv) Similar quasi-incompressible oxide phases composed of Si,

Fe, Mg, and other elements with relatively high natural abundances, rather than Gd and

Ga, might exist in the deep mantles of large extrasolar rocky planets [29].
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Figure captions

Figure 1. Shock velocity versus particle velocity of GGG: <111> direction ( ),

<100> direction ( ), analyzed neglecting small third wave in intermediate

(IM) phase ( ).  Shock velocity in IM phase depends weakly on whether or

not data analysis assumes phase transition occurs.  HEL denotes Hugoniot

elastic limit.  PT denotes onset of continuous phase transition in

intermediate (IM) phase, which completes near up=2.3 km/s at which

GGG enters virtually incompressible high-pressure (HP) phase.

Figure 2. Shock pressure and electrical conductivity of GGG versus shock density.

Pressure is indicated on left abscissa; electrical conductivity is indicated

on right abscissa: <111> direction ( ), <100> direction ( ), static 300-K

isotherm ( ) [14], electrical conductivity of <111> crystals ( ); B-M fits of

high-pressure (HP) and low-pressure (LP) 300-K isotherms and calculated

680-K isotherm in IM phase are indicated.  Diagnostic system to measure

conductivity is insensitive to values less than 10
-5

 (ohm-cm)
-1

.

Figure 3. Shock pressure versus particle velocity for several dielectric materials

with high incompressibilities: GGG ( ), diamond ( ), Al2O3 single

crystals ( ), YCZ ( ), SiC ( ), and AlN ( ).
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Fig. 1  Mashimo et al



15

Fig. 2  Mashimo et al
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Fig. 3  Mashimo et al

Fig. 3  Mashimo et al




